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Thermal convection in a thin horizontal fluid layer enclosed between two rigid slabs
of arbitrary thicknesses and conductivities has been investigated. We have found a
mathematical transformation between this problem and the problem of the upper
and lower slabs being interchanged. A weakly nonlinear expansion has been applied
to reduce the governing equations to a set of Landau equations. Their extremum
principle combined with an analytical solution for the case of insulating slabs has
been used to prove that rhombuses and rolls are the only stable solutions. Hexagons,
quasi-patterns and any solution involving higher numbers of modes, are proved to
be unstable. Stability regions of rolls and rhombuses have been found numerically
for a wide range of slab conductivities and thicknesses. The wavenumber selection
has been investigated by studying two coupled Ginzburg–Landau equations. Earlier
stability analyses of Proctor’s equation valid for the limit of poorly conducting
slabs has revealed that the wavenumbers of squares, i.e. rhombuses with orthogonal
wave vectors, are restricted by a zigzag instability and by a truly three-dimensional
instability. We show here that the wavenumber selection for more general cases
with finite conductivities and thicknesses of the slabs are always restricted by the
same types of instability. In addition, we show how the stability and wavenumber
selection of another solution of the Ginzburg–Landau equations, the undulated rolls,
is restricted by a cross-roll instability.

1. Introduction
During the last century a large number of investigations of Rayleigh–Bénard

convection have been carried out since the pioneering studies of Bénard (1900), and
Rayleigh (1916). Getling (1998) identifies the most important progress in the field.
Most analyses have been undertaken for the idealized situation where the temperature
is kept constant at the upper and lower fluid boundaries. This corresponds to the case
of perfectly conducting slabs. However, most convection problems relevant to some
engineering and geophysical problems do not have well-conducting slabs.

Convection in a layer heated from below can be precisely controlled and measured
in the laboratory. However, to our knowledge, only Le Gal, Pocheau & Croquette
(1988) have observed squares at the onset of buoyancy-driven convection between
poorly conducting rigid slabs of low thermal conductivity. In the present investigation,
we will consider two independently chosen slabs, each of finite thickness and
thermal conductivity. This is relevant for comparison to experiments, in particular,
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when transparent materials are applied for the slabs, making visualization by the
shadowgraph technique possible.

Early investigations of the linear stability of Rayleigh–Bénard convection between
poorly conducting boundaries were conducted by Jeffreys (1926) and Hurle,
Jakeman & Pike (1967). The classical case of constant temperatures at the fluid
boundaries were solved by Pellew & Southwell (1940), and Nield (1968) investigated
the combination of a finite upper slab and constant temperature at the lower fluid
boundary. Some of the later weakly nonlinear investigations also included some few
selected linear stability results: for cases of infinite thick slabs by Riahi (1985) and
for the case of two symmetric slabs of half the thickness of the fluid layer by Proctor
(1981).

The stability of weakly nonlinear rolls for the case of constant temperatures at the
fluid boundaries was first solved by Schluter, Lortz & Busse (1965). The problem of
small-amplitude convection in the limit of poorly conducting slabs was investigated
by Busse & Riahi (1980) and by Proctor (1981). Riahi (1985) took into account
finite conductivities of two infinitely thick slabs and calculated the stability regions
of squares and rolls. Jenkins & Proctor (1984) were the first to consider finite slabs,
restricting their investigation to the case of two symmetric identical slabs.

Newell & Whitehead (1969) and Segel (1969) derived the Ginzburg–Landau
equation for the case of constant temperature at the fluid boundaries. They showed
that the bandwidth of stable wavenumbers for the rolls is limited by the cross-roll,
the Eckhaus and the zigzag instabilities. Hoyle (1993) was the first to discover the
instabilities that narrow the bandwith of stable squares. She studied a simplification of
Proctor’s model, valid only in the limit of two insulating slabs, where the wavenumber
was assumed to be a small parameter in the problem. She determined a zigzag
instability and a truly three-dimensional instability, which she denoted ‘the rectangular
Eckhaus instability’. The nature of this instability is, however, quite different from the
Eckhaus instability. It is truly three-dimensional, modifying both the Fourier modes
of the squares, and the wavenumber of this disturbance points in the 45◦ direction
between the two wave vectors of the squares. Thus, this instability will not appear
as ‘rectangular’ in experiments. Therefore, we will here rather denote it the long
wavelength cross-roll instability (LW-CR).

The governing equations are presented in § 2. A transformation between this
problem and the problem where the upper and lower slabs are changed round is
given in § 3. Linear stability results are provided in § 4. The pattern selection and
numerical calculations of stability regions for rolls and squares are presented in § 5,
where also some remarks are made about the heat transfer. A theoretical stability
analysis of two coupled Ginzburg–Landau equations is performed in § 6 predicting
the wavenumber restrictions of stable squares owing to long-wavelength cross-roll
and zigzag disturbances. It is shown how the cross-roll disturbances also influence
another solution of the Ginzburg–Landau equations, the undulated rolls by Zaks
et al. (1996). Summary and conclusions are made in § 7.

2. Governing equations
We consider a fluid layer of infinite horizontal extent and of constant depth h.

The thermal conductivity k and the thermal diffusivity κ are constant properties.
The coefficient of thermal expansion β describes the linear density dependence on
temperature. The fluid is bounded by two rigid heat-conducting slabs. The upper slab
has a thickness denoted by h(u), a thermal conductivity k(u) and a thermal diffusivity
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κ (u). The corresponding quantities for the lower slab are denoted by h(l), k(l) and κ (l).
Here and in what follows, the superscripts (u) and (l) refer to the upper and lower
slabs.

The fluid is heated from below and cooled from above. The temperature is fixed
at the outer boundaries of the slabs, and the temperature difference between these
two boundaries is �T (positive). To describe the geometry and the flow, Cartesian
coordinates (x, y, z) are used. The z-axis is directed upwards, with the origin located
at the centre of the fluid layer. In the governing equations, the density is regarded as
constant except in the buoyancy term (the Boussinesq approximation).

A temperature perturbation θ , a pressure perturbation p and a fluid motion v of
the hydrostatic solution is considered. The corresponding temperature perturbations
in the slabs are denoted θ (l) and θ (u). The dimensionless perturbation equations take
the form

∇2v + Ra θ z − ∇p = Pr−1

(
∂v

∂t
+ v · ∇v

)
, (2.1)

∇2θ + v · z =
∂θ

∂t
+ v · ∇θ, (2.2)

∇ · v = 0, (2.3)

∇2θ (l) =
κ

κ (l)

∂θ

∂t

(l)

, (2.4)

∇2θ (u) =
κ

κ (u)

∂θ

∂t

(u)

, (2.5)

with boundary conditions

z = − 1
2

− H (l), 1
2

+ H (u): θ (l,u) = 0, (2.6)

z = − 1
2
, 1

2
: v = 0, θ = θ (l,u),

∂θ

∂z
= K (l,u) ∂θ

∂z

(l,u)

, (2.7)

where the following thickness and conductivity ratios have been introduced:

H (l,u) = h(l,u)/h, K (l,u) = k(l,u)/k. (2.8)

Here, z is the vertical unit vector. Equations (2.1)–(2.7) for the perturbation of the
hydrostatic solution (v = 0 and T − T (z = 0) = −z) have been made dimensionless
using the scales h, h2/κ , κ/h and κνρ0/h2 as units of length, time, velocity and
pressure, respectively. As the temperature scale, the temperature difference between
the top and the bottom of the fluid layer in the basic hydrostatic solution is applied.

�T (f ) =
�T

1 + H (u)/K (u) + H (l)/K (l)
. (2.9)

Pr and Ra are the Prandtl number and the Rayleigh number, defined by

Pr =
ν

κ
, Ra =

gβ�T (f )h3

κν
. (2.10)

For the special case of symmetric slabs, our definition of Ra is equal to the one
by Jenkins & Proctor (1984). The Rayleigh number is proportional to the overall
temperature difference �T through the expression for �T (f ), as defined in (2.9).
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3. A symmetry of the problem
We will here prove an important symmetry of the mathematical solution. Consider

a dual configuration, which differs from the first one in that the upper slab is placed
below the fluid layer and the lower slab is placed above. The mathematical solution
of this new problem follows by a transformation of the solution of the first problem,
including the temperature variation in the two slabs. By applying the transformation(

u, v, w, θ, p, θ (l), θ (u), z
)

→
(
u, v, −w, −θ, p, −θ (l), −θ (u), −z

)
, (3.1)

to the problem, defined by (2.1)–(2.7), we obtain exactly the same equation system,
except that the upper and lower slabs are exchanged. This gives the important result
that the mean heat transfer and the preferred flow pattern would be the same in an
experiment where the equipment is turned upside down. For the special case of two
symmetric slabs, it follows that the upward directed flow is mirrored by the downward
directed flow.

4. Linear stability
It can easily be shown that the system (2.1)–(2.7) is self-adjoint. Hence, the time

derivative vanishes at the onset of convection. With no loss of generality, the
linear stability problem can be solved by assuming an eigen mode of the form
θ = θ̂(z) exp(iαx), where the α is the wavenumber (correspondingly for v, p and θ (l,u)).
The critical Rayleigh number, Rac, and the critical wavenumber, αc, then depend only
on the four slab properties H (l,u) and K (l,u).

In order to give a compact presentation of our results, we introduce two new
dimensionless parameters that might be regarded as the effective conductivities of the
slabs:

ξ (l,u) =

{
K (l,u)

/
H (l,u) if H (l,u) � 1,

K (l,u) if H (l,u) > 1.
(4.1)

Figure 1(a–d) shows Rac as a function of the slab properties ξ (l,u) for the cases
when the slab thicknesses are comparable to the thickness of the fluid layer, i.e. when
0.1 � H (l,u) � 1. In figure 1(e) Rac is shown as a function of ξ (l) and ξ (u) for all combina-
tions of infinitely thick or thin slabs. Figure 1(f) indicates the critical wavenumbers
corresponding to the cases in figure 1(e). These asymptotic cases in figure 1(e, f ) are
close approximations when H (l,u) > 1 or H (l,u) < 0.1.

We note from figure 1(e,f) that the commonly applied approximation of perfectly
conducting slabs, Rac =1707.8 and αc = 3.12 by Pellew & Southwell (1940), is valid
only when ξ (l,u) are rather large, in the range 10–100. At the other extreme, the case
of insulating slabs, Rac = 720 and αc = 0 by Jeffreys (1926), is unrealistic to attain
experimentally, because of the small wavenumbers involved.

Our results in figure 1(a–d) are relevant for the experimental conditions, covering
the entire range of thicknesses and conductivities of two arbitrarily chosen finite
slabs. Note that the use of ξ (l,u) roughly takes into account the influence of the slab
thicknesses. Hence, the results in the limits of thin or thick slabs in figure 1(e, f)
provide fairly good estimates even for the cases with finite slabs in figure 1(a–d).

5. The pattern selection
The existence of an extremum principle for weakly nonlinear convection was

derived by Busse (1967). In this section, we will reduce the governing equations of the
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Figure 1. (a)–(d) The dependency of Rac on the effective conductivities of the slabs, ξ (l) and
ξ (u), for the indicated combinations of slab thicknesses. (e) The dependency of Rac on the
effective conductivities of the slabs, ξ (l) and ξ (u), for the possible combinations of infinitely
thick and thin slabs. (f ) The dependency of αc on the effective conductivities of the slabs, ξ (l)

and ξ (u), for the possible combinations of infinitely thick and thin slabs.
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problem to an infinite set of coupled Landau equations, and then apply a maximum
principle to determine which planforms are stable. By the use of the limiting case of
two insulating slabs as a lower bound, we will prove that all solutions are unstable
except either rolls or rhombuses. Our analysis of the Landau equations is comparable
to the one by Malomed, Nepomnyashchy & Tribelsky (1989). However, our analysis
is more general and complete in the sense that we include an infinite number of
randomly oriented wave vectors, whereas their work was restricted to up to six evenly
distributed wave vectors.

For supercritical Rayleigh numbers near the onset of convection, a weakly nonlinear
expansion can be made.

θ = εθ (1) + ε2θ (2) + · · · , (5.1)

where

θ (1) = θ̂ (z)

N∑
n=1

An exp(iαn · r) + c.c. (5.2)

Here, c.c. denotes the complex conjugate terms, |αn| =αc and r = (x, y). The mathe-
matical details of this expansion are omitted here, since similar techniques have been
applied in previous works (for a review see Getling 1998). Further details are also
given in Holmedal (1998). The result is that the governing equations (2.1)–(2.7) are
reduced to a system of coupled Landau equations:

dCn

dt
= εCn − C3

n −
N∑

m=1
n�=m

βmnC
2
mCn. (5.3)

Here, the amplitudes Cn ∝ εAn, and the reduced Rayleigh number ε is assumed to be
a small quantity,

ε =
Ra − Rac

Rac

. (5.4)

The coupling coefficients βmn are real-valued parameters that depend on the angle,
ϑmn, between the wave vectors αm and αn. Since here all the coefficients of the Landau
equations are real-valued, we have, in (5.3), without loss of generality, chosen the
amplitudes Cn to be real-valued.

Figure 2 displays βmn as a function of ϑmn for some selected sets of the external
parameters. For the sake of simplicity, the subscripts of β and ϑ will be omitted when
this is convenient. For any given value of ϑ , we have found that β is a minimum when
both slabs are insulating (curve e). We note the general result that β =2 for vanishing
value of ϑ (for all types of slabs). Since β > 0 for all types of slabs and values of ϑ ,
the onset of convection occurs as a forward bifurcation and no sub-critical motions
are possible. The limit of two insulating slabs and an infinite Prandtl number has
been investigated by Busse & Riahi (1980). This limit yields the curve labelled e in
the figure. Its analytical formula is:

βe(ϑ) = 2
3
(1 + 2 cos2 ϑ). (5.5)

In the Appendix, we use this curve (5.5) as a lower bound for an extremum principle
of the Landau equations (5.3) to prove that when β(π/2)> 1 only rolls are stable,
whereas only rhombuses are stable when β(π/2)< 1. All quasi-periodic structures
involving higher numbers of modes are proved to be unstable. Our results are in
agreement with the analysis by Malomed et al. (1989). It should be mentioned that
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Figure 2. The Landau coefficient β as a function of the angle ϑ between the wave vectors.
(a) One slab insulating, the other slab perfectly conducting and Pr = 0.2. (b) Two symmetric
slabs with (K (l,u), H (l,u)) = (0.1, 1) and Pr = 0.1. (c) Both slabs perfectly conducting (solid line)
and one slab insulating and the other slab perfectly conducting (dashed line) for cases of
infinite Pr . (d) (K (l), H (l)) = (0.05, 0.5), (K (u), H (u)) = (0.1, 1) and infinite Pr . (e) Both slabs
insulating and infinite Pr .

Rucklidge & Rucklidge (2003) questioned the reliability of calculating the properties
of the quasi-patterns by the use of Landau equations.

It can be shown that Nurhombuses −1 = 2(Nurolls −1)/(1+β(ϑrhombuses)), where Nu= 1+
(dθ/dz)z=−1/2 is the Nusselt number, where the overbar denotes the horizontal average.
Hence, the solution that is stable has the strongest heat transport through the fluid
layer. Squares, which are rhombuses with orthogonal wave vectors, have the largest
growth rate and the strongest heat transport when two-mode solutions are stable.

The initial slope of the heat transport curve, dNu/dε, vanishes in the limit where
at least one of the slabs is insulating or infinitely thick. A comment should be made
here about the works by Busse & Riahi (1980) and Riahi (1985). Their Nusselt
and Rayleigh numbers are based on the temperature difference between the mean
temperatures at the fluid boundaries. This temperature scale depends on the realized
flow and is not proportional to the externally forced �T . Therefore, the initial slope
of the heat transport curve based on their temperature scale remains finite in the
insulating limit.

5.1. Numerical stability results

We have proved that the only possible stable pattern is either rolls or rhombuses,
and that these solutions mutually exclude each other. We will now present the results
from numerical calculations, where for given K (l,u), H (l,u) and Pr , the value of β(π/2)
has been calculated to determine whether rolls or rhombuses are stable.

It is interesting to consider the stability of the experiment by Le Gal, Pocheau &
Croquette (1988). They carried out their experiment using Plexiglas and water,
the parameters being K (l) =K (u) = 0.4, H (l) =H (u) = 2 and Pr = 7. For the observed
squares, they estimated the wavenumber to be α = 2.5. According to our linear
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Figure 3. Regions of stable rhombuses. (a) In the (K (l)/H (l),K (u)/H (u))-plane for various
Prandtl numbers when both slabs are infinitely thin. (b) In the (K (l),K (u)/H (u))-plane for
various Prandtl numbers when the lower slab is infinitely thick and the upper slab infinitely
thin. The dotted curves denote the same stability curves, but with H (l) = 1 and H (u) = 0.1. Rolls
are stable outside the regions.

results, the critical point for their set-up is (αc, Rac) = (1.96, 1072). Using this critical
wavenumber instead of their estimate, we find β(π/2) = 0.92, for which squares indeed
are stable. Applying their wavenumber estimate yields β(π/2) = 0.96, also stable.

The stability curves depend on only one slab parameter, K (l,u)/H (l,u), for slabs that
are sufficiently thin. The stability curves for the limit of two infinitely thin slabs are
displayed in figure 3(a) for selected values of the Prandtl number. The dotted lines
indicate the case of two slabs having one-tenth of the thickness of the fluid layer.

The stability curves depend only on K (l,u), for slabs that are sufficiently thick.
Figure 3(b) shows stability results in the limit of one infinitely thick and one infinitely
thin slab for a selection of Prandtl numbers. The dotted lines show approximately the
same results for the case where the thin slab is one-tenth as thick as the fluid layer,
and the thick slab is equally thick as the fluid layer. The results in figure 3 suggest
that if a slab is thinner than one-tenth of the fluid layer or thicker than the layer,
the stability curves are approximately equal as if the slab was infinitely thin or thick,
respectively.

Finally, in figure 4, we display the stability curves with Pr → ∞, for finite values
of H (l) and H (u). Combinations of H (l) and H (u) with values 0.1, 0.3, 0.5, 0.7 and 1
are shown (remember, the two slabs may be exchanged without altering the stability
results). These thicknesses are typical in experiments. The same kind of dependence
on the thicknesses of the slabs, as shown in figure 4, is expected for other values of
the Prandtl number.

6. The wavenumber selection
In the limit of small wavenumbers, the wavenumber selection of squares has been

investigated by Hoyle (1993). Her starting point was Proctor’s equation, valid in the
limit of poorly conducting slabs where the wavenumber becomes very small. She was
the first to show that the squares become unstable to the zigzag instability and a
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Figure 4. Regions of stable rhombuses in the (K (l)/H (l),K (u)/H (u))-plane for infinite Prandtl
number. Combinations of five selected thicknesses of the slabs in the range 0.1 � H (l,u) � 1
are shown. Rolls are stable outside the regions. Note that the upper and lower slab can be
interchanged.

long-wavelength cross-roll instability. We will here consider the more general cases
involving slabs of finite thicknesses and conductivities and finite wavenumbers. Our
starting point will be a set of two coupled Ginzburg–Landau equations, which can
be derived directly from the governing equations in a similar manner to the Landau
equations, (5.2), but where, in addition, the amplitudes are allowed to vary slowly in
the horizontal directions. To keep the algebra simple we will restrict our attention to
squares, which is the special case of rhombuses that has the strongest growth.

∂A

∂t
= εA +

1

2Rac

d2Rac

dα2

(
∂

∂x
+

1

2iαc

∂2

∂y2

)2

A − (|A|2 + β|B|2)A, (6.1)
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∂B

∂t
= εB +

1

2Rac

d2Rac

dα2

(
∂

∂y
+

1

2iαc

∂2

∂x2

)2

B − (|B|2 + β|A|2)B, (6.2)

here, β =β(π/2).
We will now study the stability of squares with wavenumber near αc. A stationary

solution in the form of squares may be written

A =

√
ε − ε0

1 + β
exp(i(α − αc)x), B =

√
ε − ε0

1 + β
exp(i(α − αc)y), (6.3)

where the reduced Rayleigh number on the neutral curve is

ε0 =
1

2Rac

d2Rac

dα2
(α − αc)

2. (6.4)

Perturbations a and b of the amplitudes A and B yield solutions of the type:

a = (a1exp(iqx + iry + σ t) + a∗
2exp(−iqx + iry + σ ∗t))exp (i(α − αc)x) ,

b = (b1exp(iqx + iry + σ t) + b∗
2exp(−iqx + iry + σ ∗t))exp (i(α − αc)y) ,

where a1, a2, b1 and b2 are constants and ∗ denotes the complex conjugate. The
characteristic fourth-order stability polynomial for the growth, σ , then can be written

DqrDrq − 4β2(σ + Xqr )(σ + Xrq)(ε − ε0)
2 = 0, (6.5)

where

Dqr = (1 + β)
(
(σ + Xqr )

2 − U 2
qr

)
+ 2(σ + Xqr )(ε − ε0),

Xqr =
1

2Rac

d2Rac

dα2

(
r4

4α2
c

+ q2 + (α − αc)
r2

αc

)
,

Uqr =
1

2Rac

d2Rac

dα2

(
2(α − αc) +

r2

αc

)
q.

In general, the four roots, σ , must be found numerically. However, we have derived
analytically the two roots causing the fast-growing disturbances. For the special case
with |q| = |r | = s, one of the roots of (6.5) is

σ = − (ε − ε0)(1 − β)

(1 + β)
+

√
(ε − ε0)2(1 − β)2

(1 + β)2
+ U 2

ss − Xss. (6.6)

For small values of s and close to the critical point we find

σ =
s2

2Rac

d2Rac

dα2

(
3 + β

1 − β

ε0

ε
− 1

)
+ O(s4, (α − αc)

3s2). (6.7)

Therefore, a necessary condition for the stability of squares is that

ε >
3 + β

1 − β
ε0. (6.8)

The eigenvector of this disturbance is

(a1, a2, b1, b2) = (a, b, −a, −b), (6.9)

where a = − (ε − ε0)(1 − β)/(1 + β) and b =
√

(ε − ε0)2(1 − β)2/(1 + β)2 + U 2
ss + Uss .

Since the signs of the disturbances a and b are opposite, one of the two rolls will grow
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locally at the expense of the other. Clearly, this instability is the long-wavelength
cross-roll instability (LW-CR), that Hoyle (1993) denoted ‘the rectangular Eckhaus
instability’.

The other important instability is found with either (q, r) = (0, s) or (q, r) = (s, 0).
One of the roots of (6.5) is then easily obtained as

σ = − s2

2αcRac

d2Rac

dα2
(α − αc) − s4

8α2
cRac

d2Rac

dα2
, (6.10)

This root causes an instability of the squares if

α < αc. (6.11)

This is similar to the condition for zigzag instability of the rolls. The eigenvector of this
disturbance may be written

(a1, a2, b1, b2) =

{
(1, −1, 0, 0), q = 0, r = s,

(0, 0, 1, −1), q = s, r = 0.
(6.12)

We recognize this instability as the zigzag instability, a well-known instability for the
case of rolls. Here, it affects independently each of the two crossed rolls that the squares
consist of.

The stability region of the squares yields the same type of instability as first
discovered for the limit of small wavenumbers and poorly conducting slabs by Hoyle
(1993). It is reasonable to expect similar stability properties of rhombuses with
ϑ �= π/2, by adopting β = β(ϑ) in (6.8) and (6.11).

For the case of rolls, the instabilities are well known: the zigzag instability for α < αc;
the Eckhaus instability for ε < 3ε0; and the cross-roll instability for ε < ε0β/(β − 1).
When β > 1.5, the Eckhaus instability is stricter than the cross-roll instability, which
is the case for low Prandtl numbers.

Zaks et al. (1996) showed that undulated rolls can be a stable solution for
wavenumbers that are smaller than the critical one. The undulated rolls can be
expressed as the following approximate solution of (6.1) with B = 0 and:

A = A01 exp(i(α − αc)x)+A02 exp(i(α − αc)x +ipy)+A03 exp(i(α − αc)x − ipy), (6.13)

where

A2
02 = A2

03 =
1

Rac

d2Rac

dα2

(
(α − αc)

2 −
(

α − αc +
p2

2αc

)2 )
, (6.14)

A2
01 = εc − 1

Rac

d2Rac

dα2

(
3(α − αc)

2 − 2

(
α − αc +

p2

2αc

)2 )
. (6.15)

Here, p denotes the transverse component of the wave vector. It can be extracted
from their work that the undulated rolls are stable in the region where

5.828ε0 � ε � 7ε0, α < αc. (6.16)

Zaks et al. (1996) did not include cross-roll disturbances in their analysis. It can be
shown that the undulated rolls are unstable to a cross-roll instability when

ε <
β

β − 1
ε0 − d2Rac

dα2

p2

2Rac

(
4(α − αc) +

p2

α2
c

)
. (6.17)

It follows that all the undulated roll solutions are unstable when β < 7/6. Hence,
the undulated rolls are only just stable for the case of large Prandtl numbers and
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Figure 5. An example (αc = 3,Rac = 1601, ∂2Rac/∂α2 = 300, β = 1.3) of stability regions of
rolls and of undulated rolls. The stability of the rolls is restricted by the zigzag instability from
the left-hand side and by the cross-roll instability from the right-hand side. The stable region
of the undulated rolls contains solutions, where the wavenumber p of the variation along the
roll axis increases with the distance from the critical point. The tiny stability region for one
particular value, p = 0.6, is included.

well-conducting boundaries, for which β → 1.23. Their stability is strengthened with
decreased Pr , and also with increased K (l,u)/H (l,u) in the general case.

An example of the stability regions of rolls and of undulated rolls is given in
figure 5. A narrow wedge of stability is obtained for each value of p, the one obtained
for p =0.6 being included in the figure. In this example, β < 1.5 and therefore the
stability region of the rolls is enclosed within the zigzag instability and the cross-roll
instability.

Other stationary solutions involving a slow variation of the amplitudes are likely
to exist also for rhombuses. However, this is beyond the scope of this investigation.

7. Summary and conclusions
We have investigated thermal convection in a horizontal fluid layer sandwiched

between slabs of arbitrary thickness and thermal conductivity. A transformation has
been found, which relates the solution for the case where the slabs are interchanged.
This transformation is generally valid for the governing equations, within the
Boussinesq approximation, giving the same type of nonlinear pattern and the same
heat transfer when the slabs are interchanged.

The critical Rayleigh number for the onset of convection has been calculated as a
function of the slab properties. The weakly nonlinear problem has been reduced to
a set of coupled Landau equations by a weakly nonlinear expansion. A maximum
principle of the Landau equations and the solution for the limit of insulating slabs
has been applied to show that the only stable planform is either rolls or rhombuses.
The stable solutions have the largest heat transfer through the fluid layer. We have
calculated numerically which pattern is stable, depending on the slab properties and
the Prandtl number.
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The investigation of two coupled Ginzburg–Landau equations revealed that also
for cases with finite thicknesses and conductivities of the slabs, the wavenumbers of
stable squares are restricted by the instabilities first discovered by Hoyle (1993) for
poorly conducting boundaries and small wavenumbers. These are the zigzag instability
and a long-wavelength cross-roll instability. Furthermore, we have shown that the
undulated rolls by Zaks et al. (1996) have a smaller stability region than the rolls as
a function of the slab properties, because of restrictions on the allowed wavenumbers
by the cross-roll instability.

A couple of interesting questions arise from this work. First, do stable ‘undulated
rhombuses’ exist? i.e. a two-mode version of the undulated rolls with amplitudes that
vary slowly in the horizontal directions. Secondly, what happens near the stability
border between rolls and rhombuses? The stability of fully nonlinear solutions for
squares and rolls is by Holmedal (2005).

Appendix. Stability of the Landau equations
In order to discuss the stability of stationary solutions of the Landau equations,

(5.3), we apply their potential V :

V = 1
2
ε
∑

n

C2
n − 1

4

∑
n

C4
n − 1

4

∑
mn
m�=n

βmnC
2
mC2

n. (A 1)

The Landau equations, (5.3), can then be written as

dCn

dt
=

∂V

∂Cn

, (A 2)

from which it follows that the N -dimensional vector dCn is always directed towards
increasing value of V . The function V will therefore continuously increase until it
eventually attains a maximal value corresponding to a stable steady solution.

For any stationary solution we must have

∂V

∂Cn

= 0, n = 1, . . . , N. (A 3)

Furthermore, to ensure that the stationary solution corresponds to a maximum
point (stable solution), the matrix −∂2V/∂Ci∂Cj = −Vij , must be positive definite. A
necessary and sufficient condition for positive definiteness is that the leading principal
minor determinants

Hn = det




V11 V12 · · · V1n

V21 V22 · · · V2n

...
...

Vn1 Vn2 · · · Vnn


 (−1)n (n � N ), (A 4)

are positive, i.e. H1 > 0, H2 > 0, . . . , Hn > 0.
The signs of the determinants Hn are determined by the values of the Landau

coefficients βmn. We therefore begin the stability analysis by noting that because of
the rotational symmetry of the problem, it is easy to show that the function β(ϑmn) is
symmetric about 0, π/2, π, . . . .
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A.1. Stability of one-mode solutions (rolls)

Let us consider the solution of the Landau equations, (5.3), with one non-zero
amplitude only: C2

1 = ε, Cj = 0, j �= 1. This steady solution represents rolls. The
leading principal minor determinant of order n then becomes

Hn = 2εn(β12 − 1)(β13 − 1) · · · · · (β1n − 1). (A 5)

We conclude that a necessary and sufficient condition for the roll solution to be stable
is that

β(ϑ) > 1 for all ϑ ∈ [0, π/2] . (A 6)

A.2. Stability of two mode solutions (rhombuses)

An arbitrary two-mode solution of the Landau equations is given by C2
1 = C2

2 = ε/(1+
β12) and Cj = 0 when j > 2. From (A 4), we obtain the leading principal minor
determinants:

H1 =
2ε

1 + β12

, H2 = 4ε(1 − β12), (A 7)

Hn = H2ε
n−2

(
β13 + β23 − 1 − β12

1 + β12

)(
β14 + β24 − 1 − β12

1 + β12

)

· · ·
(

β1n + β2n − 1 − β12

1 + β12

)
, n = 3, 4, . . . . (A 8)

Here, β1n and β2n are the Landau coefficients which couple the solution modes to
mode number n= 3, 4, . . . . The solution is stable if, and only if, all Hn are positive.
Hence, to ensure that the solution is stable, we must have fulfilled the conditions

β12 < 1, (A 9)

β1n + β2n > 1 + β12 (n = 3, 4, . . .). (A 10)

We will now show that the condition (A 10) is always fulfilled if condition (A 9)
holds. Let us consider a mode number 3 (not part of the stationary solution). If
condition (A 9) is fulfilled, then condition (A 10) is satisfied if

β13 + β23 � 2. (A 11)

Condition (A 11) replaces condition (A 9) since mode 3 is chosen arbitrarily. We will
use β >βe, where βe =

(
1 + 2 cos2 ϑ

)
2/3, as a lower limit for the right-hand side of

the inequality (A 11):

β13 + β23 � βe(ϑ13) + βe(ϑ23). (A 12)

From the constraint β > βe, it follows that in the search for stable solutions it is
sufficient to consider ϑ12 in the interval

ϑ12 ∈
〈

1
3
π, 2

3
π
]
. (A 13)

Let us apply the symmetries of β and rewrite the right-hand side of inequality (A 12):

βe(ϑ13) + βe(ϑ23) = βe(ϑ13) + βe(ϑ13 − ϑ12)

= 4
3
(1 + cos2 ϑ13 + cos2(ϑ13 − ϑ12)). (A 14)

A straightforward analysis of this expression gives

βe(ϑ13) + βe(ϑ23) > 2 for ϑ12 ∈
〈

1
3
π, 2

3
π
]
, (A 15)
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for any choice of ϑ13. Hence, the condition (A 11) and thereby (A 10) is always fulfilled
if (A 9) is satisfied.

We have shown that the condition (A 7) that β12 < 1, is a necessary and sufficient
stability criterion for rhombuses to be stable, provided the lower bound β >βe.

A.3. Stability of solutions involving three or more modes

Finally, we examine the stability of a stationary solution composed of three or more
(non-zero) modes. Let C1 and C2 denote the amplitudes of two of these modes
(of relative orientation ϑ12). From (A 4), it follows that the leading principal minor
determinant H2 is given by

H2 = 4C2
1C

2
2 (1 − β12)(1 + β12). (A 16)

We see that similarly as for the two-mode planform, instability occurs for β12 > 1.
With the exception of pure hexagons, any planform involving three modes or more
will always consist of modes where at least two of them have a relative orientation
ϑ12 < π/3. Since β >βe � 1 always when ϑ12 � π/3 it follows that all solutions
involving three modes or more are unstable.

To investigate the singular case with β = βe, higher-order terms must be added to
the Landau equations. This limit represents a non-realistic theoretical limit for the
case of Rayleigh–Bénard convection between finite slabs, and will therefore not be
discussed further in this investigation.
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